quinta-feira, 21 de novembro de 2019

Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
,
x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.
Cada α é um operador linear que se aplica à função de onda. Escritos como matrizes 4×4, são conhecidos como matrizes de Dirac. Uma das escolhas possíveis de matrizes é a seguinte:
.








Equações de onda são exemplos de equações diferenciais parciais hiperbólicas, mas existem muitas variações.
Na sua forma mais simples, a equação de onda diz respeito a uma variável de tempo t, uma ou mais variáveis ​​espaciais x1x2, …, xn, e uma função escalar u = u (x1x2, …, xnt), cujos valores poderiam modelar o deslocamento de uma onda. A equação de onda para u é:
onde ∇2 é o (espacial) Laplaciano e onde c é uma constante fixa.

Soluções desta equação que são inicialmente zero, fora de alguma região restrita, propagar-se-ão na região a uma velocidade fixa em todas as direções espaciais, assim como ondas físicas a partir de uma perturbação localizada, a constante c é identificada com a velocidade de propagação da onda. Esta equação é linear, da mesma forma que a soma de quaisquer duas soluções é novamente uma solução: na física esta propriedade é chamada princípio da superposição.
A equação sozinha não especifica uma solução, uma solução única é normalmente obtida pela fixação de um problema com outras condições, tais como condições iniciais, que prescrevem o valor e a velocidade da onda. Outra classe importante de problemas especifica as condições de contorno, para as quais as soluções representam ondas estacionárias, ou harmônicos, análogos aos harmônicos de instrumentos musicais.
Para modelos de fenômenos de onda dispersivos, aqueles em que a velocidade de propagação da onda varia com a frequência da onda, a constante c passa a ter a velocidade de fase:
A equação da onda elástica em três dimensões descreve a propagação de ondas em meio elástico isotrópico homogêneo. A maioria dos materiais sólidos são elásticos, por isso esta equação descreve fenômenos como as ondas sísmicas na Terra e as ondas de ultra-som usados ​​para detectar falhas em materiais. Enquanto linear, esta equação tem uma forma mais complexa do que as equações acima, como deve contabilizar movimento tanto longitudinal e transversal:
em que: λ e μ são os chamados parâmetros Lamé descrevendo as propriedades elásticas do meio, ρ é a densidade, f é a função fonte (força motriz), e u é o vetor de deslocamento.
Nota-se que nesta equação, tanto a força quanto o deslocamento são grandezas vetorias . Assim, esta equação é conhecida como a equação de onda do vetor.
Variações da equação de onda também são encontrados na mecânica quânticafísica de plasma e relatividade geral.

x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Em mecânica quântica, a equação de Klein–Gordon é a versão relativista da equação de Schrödinger.[1] Algumas vezes chamada de Klein–Fock–Gordon ou Klein–Gordon–Fock.
É a equação de movimento de um campo escalar ou pseudo-escalar quântico. Este campo descreve partículas sem spin. Esta equação não corresponde a uma densidade de probabilidade definida positiva e além disso é de segunda ordem na derivada temporal, o que impede uma interpretação física simples. Ela descreve uma partícula pontual que se propaga nos dois sentidos temporais e a sua interpretação é possível recorrendo à teoria de antipartículas desenvolvida por Feynman e Stueckelberg. Todas soluções da equação de Dirac são soluções da equação de Klein-Gordon, mas o inverso é falso.

    A equação[editar | editar código-fonte]

    A equação de Klein–Gordon é derivada aplicando o processo de quantização a relação de energia relativística para uma partícula livre:
    fazendo as identificações padrão  e , em unidades SI se obtém a forma:
    que também é frequentemente reescrita de forma mais compacta utilizando o operador d'alembertiano  e em unidades naturais:
    No contexto de Teoria Quântica de Campos, a equação também pode ser derivada aplicando a equação de Euler-Lagrange para campos:
    em que a convenção de soma de Einstein está em uso, à seguinte densidade de lagrangiana:
    .
    Neste contexto, após o processo de segunda quantização, se diz que este campo de Klein-Gordon descreve bósons sem carga, sem spin de massa m.
    Versão Complexa[editar | editar código-fonte]
    Há uma versão complexa do campo de Klein-Gordon podendo ser derivada da densidade de Lagrangiana:
    satisfazendo:
    A este campo  estão associados bósons com carga, sem spin de massa m.[2]

    História[editar | editar código-fonte]

    A equação foi nomeada em honra dos físicos Oskar Klein e Walter Gordon, que a propuseram no ano de 1927 para descrever electrões relativistas. No entanto, foi mais tarde descoberto que os electrões são partículas com spin e corretamente descritos pela equação de Dirac. A equação de Klein Gordon descreve corretamente partículas escalares como o pião.


    x
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D





    Em teoria das probabilidades e estatística, a função densidade de probabilidade (FDP), ou densidade de uma variável aleatória contínua, é uma função que descreve a probabilidade relativa de uma variável aleatória tomar um valor dado. A probabilidade da variável aleatória cair em uma faixa particular é dada pela integral da densidade dessa variável sobre tal faixa - isto é, é dada pela área abaixo da função densidade mas acima do eixo horizontal e entre o menor e o maior valor dessa faixa. A função densidade de probabilidade é não negativa sempre, e sua integral sobre todo o espaço é igual a um. A função densidade pode ser obtida a partir da função distribuição acumulada a partir da operação de derivação (quando esta é derivável).
    Se uma variável aleatória tem densidade dada por f(x), então o intervalo infinitesimal [x, x+dx] tem probabilidade f(x) dx. Formalmente, a função densidade de probabilidade (ou fdp), denotada por , de uma variável aleatória contínua X é a função que satisfaz
    Em linguagem matemáticaEm Português
    Uma variável aleatória contínua tem densidade f(x) se f é uma função não-negativa integrável à Lebesgue tal que a probabilidade no intervalo [a,b] é dada por 
     [1]A probabilidade de a variável aleatória X assumir um valor menor ou igual a um certo x é dada pela integral . Equivale, quando à função distribuição acumulada das variáveis aleatórias discretas.
    Os termos função distribuição de probabilidade[2] e função de probabilidade[3] por vezes foram sido utilizados para denotar a função de densidade de probabilidade. No entanto, esse uso não é padrão entre estatísticos. Em outras fontes, função de distribuição de probabilidade pode ser utilizado quando a distribuição de probabilidade é definida como uma função sobre conjuntos de valores, ou pode referir-se a função distribuição acumulada, ou ainda pode ser uma função massa de probabilidade (FMP), em vez de densidade. Existem outras confusões da terminologia porque função densidade também tem sido usado para o que é aqui chamado de função massa de probabilidade (FMP). [4] Em geral, porém, a FMP é usada no contexto de variáveis aleatórias discretas (variáveis aleatórias que tenham valores de um conjunto discreto), enquanto FDP é usado no contexto de variáveis aleatórias contínuas.

      Exemplo[editar | editar código-fonte]

      Suponhamos que uma espécie de bactérias normalmente vive por 4 a 6 horas. Qual é a probabilidade de que uma bactéria viva exatamente 5 horas? A resposta é de 0%. Muitas bactérias vivem por aproximadamente 5 horas, mas não há nenhuma chance de que qualquer bactéria morra em exatamente 5.000000000 horas.
      Em vez disso, poderíamos perguntar: qual é a probabilidade de que a bactéria morra entre 5 horas e 5,01 horas? Vamos dizer que a resposta é de 0,02 (ou seja, 2%). A seguir: qual é a probabilidade de que a bactéria morra entre 5 horas e 5.001 horas? A resposta é provavelmente em torno de 0,002, uma vez que este é um décimo do intervalo anterior. A probabilidade de que a bactéria morre entre 5 horas e 5.0001 horas é provavelmente cerca de 0,0002, e assim por diante.
      Nestes três exemplos, a relação (probabilidade de morrer durante um intervalo)/(período de duração do intervalo) é aproximadamente constante, e igual a 2 por hora (ou 2 horas-1). Por exemplo, há uma probabilidade de 0,02 de morte no intervalo de 0,01 horas entre 5 e 5,01 horas, e (0,02 de probabilidade / 0,01 horas) = ​​2 horas-1. Esta quantidade de 2 horas-1 é chamada de densidade de probabilidade para a morte em cerca de 5 horas.
      Portanto, em resposta à pergunta qual é a probabilidade de que a bactéria morra em 5 horas?, a resposta literalmente correta, mas inútil, é 0, mas uma melhor resposta pode ser escrita como (2 horas-1dt. Esta é a probabilidade de que a bactéria morra dentro de uma pequena (infinitesimal) janela de tempo de cerca de 5 horas, onde dt é a duração da janela.
      Por exemplo, a probabilidade de que ela viva por mais do que 5 horas, mas menos do que (5 horas + 1 nanossegundo), é (2 horas-1) x (1 nanosegundo) ≃ 6 × 10-13 (usando a conversão de unidade 3,6 × 1012 nanossegundos = 1 hora).
      Existe uma função de densidade de probabilidade com f sendo f (5 horas) = ​​2 horas-1. A integral de f sobre qualquer janela de tempo (não apenas janelas infinitesimais, mas também grandes janelas) é a probabilidade de que a bactéria morra nessa janela.

      Diferença entre "função de probabilidade" e "função densidade de probabilidade"[editar | editar código-fonte]

      Visualização geométrica da moda, mediana e média de uma função densidade de probabilidade arbitrária.[5]
      O conceito de "função densidade de probabilidade" é muito semelhante ao conceito de "função de probabilidade", que serve para o caso de variáveis aleatórias discretas. No entanto, é preciso entender bem a diferença entre eles.
      Uma variável aleatória discreta tem um número definido de possíveis ocorrências. Por exemplo, a variável aleatória "resultado de um dado" tem apenas 6 possíveis ocorrências: 1,2,3,4,5 e 6. Por isso, a função de probabilidade a ela associada também só pode assumir 6 valores (1/6 cada uma, se o dado não for viciado), que necessariamente somarão 1.
      Uma variável aleatória contínua, ao contrário, tem um número infinito de ocorrências. Por exemplo, a variável aleatória "idade de cada empregado de uma empresa" pode assumir infinitos valores, por exemplo 18,1 anos, 18,23 anos, 20,341 anos, 30,3167 anos etc. Por isso, se simplesmente tentarmos calcular  como faz uma função de probabilidade para uma variável aleatória discreta, chegaremos ao seguinte[6]:
      Portanto,
       
      x
      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Ou seja, a probabilidade de a variável aleatória contínua X assumir um determinado valor x é zero. Por isso, a "função densidade de probabilidade" não trabalha com valores pontuais, e sim com intervalos infinitesimais - ela informa a probabilidade de a variável X assumir um valor naquele intervalo.